Abstract

ABSTRACT We have monitored the polarized radiation of the Type IIb SN 1993J in M81 over a period of 41 days, starting from 7 days after the explosion on 1993 March 27.5 (UT). Our data show clear evidence that the intrinsic continuum polarization of SN 1993J evolved from being essentially negligible on April 3--4, to a peak value of ∼~1% in late April 1993, and started to decline by the middle of May. The polarized flux spectrum in late April strongly resembled spectra of Type Ib supernovae, with prominent He I lines but redshifted ∼ 3380 \\kms~relative to the total flux spectrum. These data are consistent with models of Höflich; they suggest that the polarization was most likely produced by either an asymmetric helium core configuration of material and/or flux, or scattering from an asymmetric circumstellar distribution of dusty material. A combination of electron and dust scattering, as well as a clumpy or stratified distribution of the emitting gas, are possible as the polarization mechanism of the continuum and emission lines. The latter interpretation is supported by the fact that 1--2 months after the explosion, the observed rotations of polarization position angle across prominent line features remain even after correction for effects of interstellar polarization. This indicates that emission lines of He I, Fe II, [O I], and H are all intrinsically polarized at position angles different from that of the continuum, with the non-Balmer lines generally being most highly polarized. If the supernova had an oblate geometry, our data are consistent with a small viewing angle (i.e., more or less equator-on), although the degree of asphericity that gave rise to the polarization at early times is probably smaller (minor to major axis ratio >rsim~0.7) than has been previously suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.