Abstract

Feeding and feedback in AGN play a very important role to gain a proper understanding of galaxy formation and evolution. The interaction between activity mechanisms in the nucleus and its influence in the host galaxy are related to the physical processes involved in feedback and the gas fuelling of the black hole. The discovery of many massive molecular outflows in the last few years have been promoting the idea that winds may be major actors in sweeping the gas out of galaxies. Also, the widely observed winds from the central regions of AGN are promising candidates to explain the scaling relations (e.g. the black hole-bulge mass relation, BH accretion rate tracking the star formation history) under the AGN feedback scenario. Out goal is to probe these phenomena through the kinematic and morphology of the gas inside the central kpc in nearby AGN. This has recently been possible due to the unprecedented ALMA spatial resolution and sensitivity. We present results on NGC7213 and NGC1808, the latter is part of a new ALMA follow-up of the NuGa project, a previous high-resolution (0.5-1”) CO survey of low luminosity AGN performed with the IRAM PdBI.

Highlights

  • The fueling of SMBH at the center of galaxies and the subsequent feedback from its active nuclei, are among the key processes to understand the concerted growth of galaxies and BH

  • AGN feedback is invoked to explain the formation of massive galaxies when we compare the luminosity function of galaxies to theoretical simulations based on the cold dark matter models (Silk and Mamon, 2012)

  • Winds and outflows produced by the AGN can eject or heat the gas, terminate the star formation and through the lack of fuel for accretion, quench the black hole activity

Read more

Summary

Introduction

The fueling of SMBH at the center of galaxies and the subsequent feedback from its active nuclei, are among the key processes to understand the concerted growth of galaxies and BH. AGN feedback is invoked to explain the formation of massive galaxies when we compare the luminosity function of galaxies to theoretical simulations based on the cold dark matter models (Silk and Mamon, 2012). Winds and outflows produced by the AGN can eject or heat the gas, terminate the star formation and through the lack of fuel for accretion, quench the black hole activity. It is important to study the efficiency of angular momentum transport in galaxy disks in order to understand how the star formation and nuclear activity are fueled and what are the timescales involved, since both feeding process rely on a common cold gas supply, but in very different periods of time (∼105 year for BH growth and ∼107−9 year for star formation; García-Burillo, 2016).

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call