Abstract
An insightful mechanics-based concept is developed for probing the frequency-dependence in in-plane elastic moduli of microstructured lattice materials. Closed-form expressions for the complex elastic moduli are derived as a function of frequency by employing the dynamic stiffness matrix of beam elements, which can exactly capture the sub-wavelength scale dynamics. It is observed that the two Poisson's ratios are not dependent on the frequency of vibration, while the amplitude of two Young's moduli and shear modulus increase significantly with the increase of frequency. The variation of frequency-dependent phase of the complex elastic moduli is studied in terms of damping factors of the intrinsic material. The tunable frequency-dependent behaviour of elastic moduli in lattice materials could be exploited in the pseudo-static design of advanced engineering structures which are often operated in a vibrating environment. The generic concepts presented in this paper introduce new exploitable dimensions in the research of engineered materials for potential applications in various vibrating devices and structures across different length-scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.