Abstract

ABSTRACT To probe the late evolution history of the universe, we adopt two kinds of optimal basis systems. One of them is constructed by performing the principle component analysis, and the other is built by taking the multidimensional scaling approach. Cosmological observables such as the luminosity distance can be decomposed into these basis systems. These basis systems are optimized for different kinds of cosmological models that are based on different physical assumptions, even for a mixture model of them. Therefore, the so-called feature space that is projected from the basis systems is cosmological model independent, and it provides a parameterization for studying and reconstructing the Hubble expansion rate from the supernova luminosity distance and even gamma-ray burst (GRB) data with self-calibration. The circular problem when using GRBs as cosmological candles is naturally eliminated in this procedure. By using the Levenberg–Marquardt technique and the Markov Chain Monte Carlo method, we perform an observational constraint on this kind of parameterization. The data we used include the “joint light-curve analysis” data set that consists of 740 Type Ia supernovae and 109 long GRBs with the well-known Amati relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.