Abstract

This study deals with the influence of the excitation (UV-lamp, UV-laser and VUV synchrotron radiation) on the 3.31 eV band of ZnO microcrystals and of variously treated nanoparticles. The nanoparticles are synthesized in ultra high vacuum condition and their stoichiometry and crystallinity can be controlled. This provides an efficient way to probe the influence of these factors on the excitonic emission. The energy and intensity of the excitation have a strong influence on the excitonic luminescence and particularly on the 3.31 eV emission band. The result of these experiments are used to probe the origins of this band which is found to be not linked to any surface phenomena. Indeed, the only way to fully explain our results is to consider that the 3.31 eV band involve the superposition of two emissions features: the first due to acceptor defects and the other originates form the LO phononic repliqua of the free exciton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.