Abstract

The associative interaction between resin-bound polybrominated arenes and small molecules was analyzed by using various spectroscopic techniques as well as a synthetic molecular model to establish the thermodynamics. The binding in acetonitrile was three orders of magnitude stronger than that in methanol, partly owing to the tertiary conformational gating of the resin that controls the entropic terms. By using the entropic superiority, the associative binding of up to 3×104 m-1 is achieved with the non-biological system. A modified Hill plot for the quantitative analysis of bindings was also devised, which enabled the interactions at the molecular level to be elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.