Abstract

In the present work, flower-like mesoporous MoS2 has been synthesized via a one step hydrothermal approach. The electrochemical performance of synthesized flower-like MoS2 nanostructures for supercapacitor applications has been probed via cyclic voltammetry, galvanostatic charging-discharging and electrochemical impedance spectroscopy in 1 M H2SO4 (acidic electrolyte), 1 M Na2SO4 (neutral electrolyte) and 2 M KOH (basic electrolyte) electrolytes using a three electrodes configuration. On the basis of electrochemical measurements, it has been observed that as-prepared flower-like MoS2 exhibits specific capacitances of 225 F g−1, 205 F g−1 and 123 F g−1 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes at 1 A g−1, respectively. Moreover, for the MoS2 electrode the diffusion coefficients in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes are found to be 8.52 × 10−10 cm2 s−1, 5.41 × 10−10 cm2 s−1 and 8.35 × 10−10 cm2 s−1, respectively. Further, the relaxation time constants (τ), which represent how quick a supercapacitor system can deliver stored energy at high power, are found to be 37 ms, 77 ms and 1.49 s for as synthesized MoS2 in 1 M H2SO4, 1 M Na2SO4 and 2 M KOH electrolytes, respectively. However, the capacity retention/coulombic efficiency of a MoS2 electrode in 1 M H2SO4, 1 M Na2SO4 and 2MKOH is found to be ∼ 30%/89%, 89%/94% and 86%/92%, respectively, after 1000 successive cycles at 2 A g−1. Our results suggest that a pristine flower like MoS2 is a good material to design a high performance supercapacitor device, which exhibits stable electrochemical performance in 1 M Na2SO4 electrolytes. The detailed electrochemical behavior of as synthesized samples has been thoroughly described in this paper. We believe our findings would be helpful in the designing of flower-like MoS2 based practical high performance supercapacitor devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call