Abstract

As bridging species between short peptides and macromolecular proteins, peptide assemblies not only provide a supramolecular approach for the fabrication of controllable molecular machines with enzyme-like functions, but also a simplified model for understanding the catalytic mechanism of natural enzymes. In this study, we focused on probing the effect of microenvironment on the catalytic behavior of peptide assemblies. Upon simply replacing the X residue in Fmoc-FFXAH-CONH2, we realized the modulation of the microenvironment of the amyloid assemblies, which thus appeared esterase-like function with different catalytic abilities. The chemistry, structure and activity were analyzed to explore the principles that how the hydrophobic, charged, polar and chiral microenvironment deciding the catalytic behavior of the esterase mimic. In addition, we also presented the potential of the catalytic assemblies in the encapsulation, delivery and enzymatic metabolization of a mutual prodrug. This work sheds new insights for understanding the structure–function relationship of catalytic peptide assemblies and natural enzymes, and also provides a new avenue for the designing of artificial enzymes with better functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.