Abstract

Positron annihilation spectroscopy (PAS) is a very useful tool to study the defect properties of nanoscale materials. The ability of thermalized positrons to diffuse over to the surfaces of nanocrystallites prior to annihilation helps to explore the disordered atomic arrangement over there and is very useful in understanding the structure and properties of nanomaterials. As examples, the results of studies on FeS2 nanorods and ZnS nanoparticles are presented. In semiconductor nanoparticles, there are positron trapping sites within the grains also and these are characterised by using appropriate models on the measured positron lifetimes. We have observed vivid changes in the measured positron lifetimes and Doppler broadened gamma ray spectral lineshapes during structural transformations prompted by substitutional effects in Mn2+-doped ZnS nanorods. Interestingly, the nanoparticles did not exhibit the transformation, implying the morphologies of the nanosystems playing a decisive role. Quantum confinement effect in CdS nanoparticles was another phenomenon that could be seen through positron annihilation experiments. Coincidence Doppler broadening measurements have been useful to identify the elemental environment around the vacancy clusters that trap positrons. Recent studies on nanocrystalline oxide and sulphide semiconductors are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.