Abstract

The giant impact between proto-Earth and a Mars-sized planet called Theia resulted in the formation of the Earth–Moon system, and the silicate mantles of the initial bodies may have partly been vaporized. Here, we develop a machine learning potential for MgSiO3 based on the data from first-principles calculations to estimate its critical point. The variations in pressure along different isotherms yield the position of the critical point of MgSiO3 at 0.54 g cm−3 and 6750 ± 250 K, which agrees with the previous theoretical estimation. We also simulate the MgSiO3 melt under a spectrum of critical conditions to understand the changes in coordination environment with density and temperature. The fourfold Si–O coordination hardly changes with increasing density at 3000 K. However, with increasing temperature, the dominance of four-coordinated Si–O diminishes rapidly as density decreases. Regarding Mg–O coordination, the overall trend, which varies with temperature and density, remains largely consistent with Si–O but with a greater diversity in the types of coordination due to more bond breaking events. Our work opens a new avenue by employing machine learning methods to estimate the critical point of silicates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.