Abstract

We report photodetachment spectroscopy and high-resolution photoelectron imaging of para-halogen substituted phenoxide anions, p-XC6H4O- (X = F, Cl, Br, I). The dipole moments of the p-XC6H4O neutral radicals increase from 2.56 to 3.19 D for X = F to I, providing a series of similar molecules to allow the examination of charge-dipole interactions by minimizing molecule-dependent effects. Excited DBSs ([XC6H4O]*-) are observed for the four anions with binding energies of 8, 11, 24, and 53 cm-1, respectively, for X = F to I, below their respective detachment thresholds. The binding energies exhibit a linear correlation with the dipole moments of the neutral radicals, extrapolating to a critical dipole moment of 2.5 D for zero binding energy. Because of the small binding energy of the excited DBS of [FC6H4O]*-, rotational autodetachment is observed to compete with vibrational autodetachment in the resonant photoelectron spectra, resulting in electrons with near zero kinetic energies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call