Abstract

We discuss the possibility of constraining the relation between redshift and temperature of the cosmic microwave background (CMB) using multifrequency Sunyaev-Zeldovich (SZ) observations. We have simulated a catalog of clusters of galaxies detected through their SZ signature assuming the sensitivities that will be achieved by the Planck satellite at 100, 143 and 353 GHz, taking into account the instrumental noise and the contamination from the Cosmic Infrared Background and from unresolved radiosources. We have parametrized the cosmological temperature-redshift law as T ∝ (1 + z) (1−a) .U sing two sets of SZ flux density ratios (100/143 GHz, which is most sensitive to the parametrization of the T − z law, and 143/353 GHz, which is most sensitive to the peculiar velocities of the clusters) we show that it is possible to recover the T − z law assuming that the temperatures and redshifts of the clusters are known. From a simulated catalog of ∼1200 clusters, the parameter a can be recovered to an accuracy of 10 −2 . Sensitive SZ observations thus appear as a potentially useful tool to test the standard law. Most cosmological models predict a linear variation of the CMB temperature with redshift. The discovery of an alternative law would have profound implications on the cosmological model, implying creation of energy in a manner that would still maintain the black-body shape of the CMB spectrum at redshift zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.