Abstract

A metal-organic semiconductor-molecule model was developed with Ag nanoparticles (NPs), poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and 4-mercaptobenzoic acid (4-MBA) via the layer-by-layer self-assembly method. In the SERS spectrum of the Ag/PEDOT:PSS/4-MBA system, structural changes in the PEDOT chain were discovered, which provides a deeper understanding of the charge transfer (CT) mechanism in SERS and helps in the development of a method to construct metal-organic semiconductor SERS substrates. A quantitative calculation of the degree of charge transfer (ρCT(κ)) determines the CT contribution of PEDOT:PSS to the SERS intensity of the Ag/PEDOT:PSS/4-MBA system. On this basis, we propose the formation of a resonance complex between Ag NPs and PEDOT:PSS to explore the CT mechanism, which is beneficial for studying interface CT and for understanding the CT mechanism in SERS. The introduction of organic semiconductors in this study not only broadens the research scope of SERS substrates but also contributes to the exploration of SERS mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.