Abstract

The characteristic micromechanical behaviors of contrasting transformation-induced plasticity (TRIP) steels were investigated under tensile loading by in-situ neutron diffraction and transmission electron microscopy in detail. As demonstrated by the lattice strain development from the neutron diffraction, in the TRIP steel with ∼10 pct RA, microyielding of soft ferrite was responsible for the first stress partition, but a second stress sharing was caused by effective martensitic transformation. In the TRIP steel with less than 5 pct RA, where the contribution from the martensitic transformation was minor, stress partition took place virtually between the ferrite and bainite phase. Probing with systematic transmission electron microscopy (TEM) observations, we pin down the inherent correlation between the microstructural evolutions and the stress partition mechanism. Based on the experimental observations, the factors influencing the work-hardening behavior of TRIP steels are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.