Abstract

The atomic structure of californium is probed by two-step resonance ionization spectroscopy. Using samples with a total amount of about 2×1010 Cf atoms (ca. 8.3 pg), ground-state transitions as well as transitions to high-lying Rydberg states and auto-ionizing states above the ionization potential are investigated and the lifetimes of various atomic levels are measured. These investigations lead to the identification of efficient ionization schemes, important for trace analysis and nuclear structure investigations. Most of the measurements are conducted on 250Cf. In addition, the isotope shift of the isotopic chain 249−252Cf is measured for one transition. The identification and analysis of Rydberg series enables the determination of the first ionization potential of californium to EIP=50,666.76(5)cm−1. This is about a factor of 20 more precise than the current literature value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call