Abstract

Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.