Abstract

The potential-dependent surface enhanced Raman scattering (SERS) and generalized two-dimensional correlation analysis (G2DCA) methods were used to characterize three pyridine-α-hydroxymethyl biphenyl phosphine oxide isomers: (diphenylphosphoryl)(pyridine-2-yl)methanol (α-Py), (diphenylphosphoryl)(pyridine-3-yl)methanol (β-Py), and (diphenylphosphoryl)(pyridine-4-yl)methanol (γ-Py). The aforementioned compounds were deposited onto Ag, Au, and Cu electrode surfaces under different applied electrode potentials in an aqueous solution at physiological pH. On the basis of the enhancement, broadening, and shift in wavenumbers of individual bands, the geometry of the investigated molecules and influence of substituent position on the adsorption mode (in the α-(2-), β-(3-), and γ-(4-) positions), electrode type, and applied electrode potential were examined. It was found that the SERS spectra are dominated by bands assigned to phenyl (Ph) and pyridine (Py) ring vibrations. However, some differences in the arrangement of the aforementioned fragments were observed with changes to the type of the metal surface and the applied electrode potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.