Abstract

Freshwater biofilms play an essential ecological role, but they also adversely affect human activities through undesirable biofouling of artificial submerged structures. They form complex aggregates of microorganisms that colonize any type of substratum. In phototrophic biofilms, diatoms dominate in biomass and produce copious amount of extracellular polymeric substances (EPSs), making them efficient early colonizers. Therefore, a better understanding of diatoms adhesive properties is essential to develop new anti-biofouling strategies. In this context, we used atomic force microscopy (AFM) to decipher the topography and adhesive mechanisms of the common freshwater diatom Nitzschia palea. Images taken in physiological conditions revealed typical ultrastructural features with a few nanometers resolution. Using single-cell force spectroscopy, we showed that N. palea strongly adheres to hydrophobic surfaces as compared to hydrophilic ones. Chemical force spectroscopy with hydrophobic tips further confirmed that the adhesion is governed by surface-associated hydrophobic EPS distributed in clusters at the frustule surface, and mostly composed of (glyco)-lipids as revealed by Raman spectroscopy. Collectively, our results demonstrate that AFM-based nanoscopy, combined with Raman spectroscopy, is a powerful tool to provide new insights into the adhesion mechanisms of diatoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.