Abstract

The magnetic anisotropy is of both scientific and technological interest for magneto-optical material GdFeCo film. We characterize the magnetic anisotropy of a 20 nm GdFeCo film from 265 K to 320 K via Kerr loops and ferromagnetic resonance. With increasing temperature, both of the first-order uniaxial magnetic anisotropy and shape anisotropy increase. However, the competition between them causes a temperature-driven spin reorientation transition (SRT) and the effective perpendicular magnetic anisotropy decrease from 2.22 × 104 ergs/cm3 (288 K) to −1.56 × 104 ergs/cm3 (317 K). The positive second-order uniaxial magnetic anisotropy determines an easy-cone state as the mediated state during SRT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.