Abstract

In a recent computational study, we revealed some mechanistic aspects of TRPV1 (transient receptor potential channel 1) thermal activation and gating and proposed a set of probable functionally important residues — “hot spots” that have not been characterized experimentally yet. In this work, we analyzed TRPV1 point mutants G643A, I679A + A680G, and K688G/P combining molecular modeling, biochemistry, and electrophysiology. The substitution G643A reduced maximal conductivity that resulted in a normal response to moderate stimuli, but a relatively weak response to more intensive activation. I679A + A680G channel was severely toxic for oocytes most probably due to abnormally increased basal activity of the channel (“always open” gates). The replacement K688G presumably facilitated movements of TRP domain and disturbed its coupling to the pore, thus leading to spontaneous activation and enhanced desensitization of the channel. Finally, mutation K688P was suggested to impair TRP domain directed movement, and the mutated channel showed ~100-fold less sensitivity to the capsaicin, enhanced desensitization and weaker activation by the heat. Our results provide a better understanding of TRPV1 thermal and capsaicin-induced activation and gating. These observations provide a structural basis for understanding some aspects of TRPV1 channel functioning and depict potentially pathogenic mutations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.