Abstract
To further expand on the understanding of surface interactions at the liquid/solid interface on pore walls, the nuclear magnetic resonance (NMR) techniques of cryoporometry and relaxometry have been combined. The combination of these techniques allows variations in NMR relaxation parameters from pore surface to volume ratio changes and from surface interaction changes to be distinguished. By studying a range of sol–gel silicas from two different sources, it was noted that the relaxation time measurements were not consistent with the pore diameters determined by cryoporometry and N2 gas adsorption. Instead distinctly different relaxivity constants were determined for each absorbate in each of the two brands of silica. It was clear that the relaxation times were modified by more than just the pore geometry. Independent experiments on the two brands of silica suggested that the relaxometry results were heavily influenced by the concentration of paramagnetic relaxation centres in the silica gels. The strength of surface interaction, and hence surface affinity, was seen to depend on the liquid in the pores. Using this difference in surface affinities, binary mixtures of alkanes placed in sol–gel silicas were separated via preferential absorption and their components identified using cryoporometry, whereas the components could not be distinguished in the bulk liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.