Abstract

AbstractMetal–organic frameworks (MOFs) have garnered substantial interest as platforms for site‐isolated catalysis. Efficient diffusion of small‐molecule substrates to interstitial lattice‐confined catalyst sites is critical to leveraging unique opportunities of these materials as catalysts. Understanding the rates of substrate diffusion in MOFs is challenging, and few in situ chemical tools are available to evaluate substrate diffusion during interstitial MOF chemistry. Herein, we demonstrate nitrogen atom transfer (NAT) from a lattice‐confined Ru2 nitride to toluene to generate benzylamine. We use the comparison of the intramolecular deuterium kinetic isotope effect (KIE), determined for amination of a partially deuterated substrate, with the intermolecular KIE, determined by competitive amination of a mixture of perdeuterated and undeuterated substrates, to establish the relative rates of substrate diffusion and interstitial chemistry. We anticipate that the developed KIE‐based experiments will contribute to the development of porous materials for group‐transfer catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.