Abstract
ABSTRACT While the direct detection of the dark-matter particle remains very challenging, the nature of dark matter could be possibly constrained by comparing the observed abundance and properties of small-scale sub-galactic mass structures with predictions from the phenomenological dark-matter models, such as cold, warm, or hot dark matter. Galaxy-galaxy strong gravitational lensing provides a unique opportunity to search for tiny surface-brightness anomalies in the extended lensed images (i.e. Einstein rings or gravitational arcs), induced by possible small-scale mass structures in the foreground lens galaxy. In this paper, the first in a series, we introduce and test a methodology to measure the power spectrum of such surface-brightness anomalies from high-resolution Hubble Space Telescope (HST) imaging. In particular, we focus on the observational aspects of this statistical approach, such as the most suitable observational strategy and sample selection, the choice of modelling techniques, and the noise correction. We test the feasibility of the power-spectrum measurement by applying it to a sample of galaxy-galaxy strong gravitational lens systems from the Sloan Lens ACS Survey, with the most extended, bright, high-signal-to-noise-ratio lensed images, observed in the rest-frame ultraviolet. In the companion paper, we present the methodology to relate the measured power spectrum to the statistical properties of the underlying small-scale mass structures in the lens galaxy and infer the first observational constraints on the sub-galactic matter power spectrum in a massive elliptical (lens) galaxy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.