Abstract
The structural arrangement of starch polymers in presence of water is known to impact the functional properties of starchy products. In this study, the hydration of potato starch granules was investigated at the molecular level through various 1H->13C polarization transfer solid-state Nuclear Magnetic Resonance (ss-NMR) experiments. The impact of increasing the water content from 12.3 % to 45.9 % was assessed using 13C Cross Polarization Magic Angle Spinning (CPMAS), Variable Contact Time (VCT-CPMAS), Variable Spin Lock (VSL-CPMAS), and T One Rho QUEnching (TORQUE) NMR sequences. Of these, VCT-CPMAS proved to be the most promising. When applied with an optimal number of contact times, it enabled the application of several mathematical models that provided detailed insights into the structuring of protons in the hydrated potato starch granules. At low hydration (12.3 %), the models enabled various structural domains to be distinguished, which we suggest are associated with helical and amorphous structures. At moderate hydration (45.9 %), we tested two fitting models. Two pools of protons were revealed, corresponding to loosely ordered structures on the scale of tens of nanometers. These findings suggest varying water distribution during starch hydration and are likely to indicate variable hydration levels in the multilamellar amorphous structures of starch granules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.