Abstract

Steric and hydrophobic effects on substrate specificity were probed by protein engineering of subtilisin. Subtilisin has broad peptidase specificity and contains a large hydrophobic substrate binding cleft. A conserved glycine (Gly(166)), located at the bottom of the substrate binding left, was replaced by 12 nonionic amino acids by the cassette mutagenesis method. Mutant enzymes showed large changes in specificity toward substrates of increasing size and hydrophobicity. In general, the catalytic efficiency (k(cat)/K(m)) toward small hydrophobic substrates was increased (up to 16 times) by hydrophobic substitutions at position 166 in the binding cleft. Exceeding the optimal binding volume of the cleft ( approximately 160 A(3)), by enlarging either the substrate side chain or the side chain at position 166, evoked precipitous drops in catalytic efficiency (k(cat)/K(m)) (up to 5000 times) as a result of steric hindrance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.