Abstract

We propose an idea for probing spin states of two coupled quantum dots (CQD), by the dc Josephson current flowing through them. This theory requires weak coupling between CQD and electrodes, but allows arbitrary inter-dot tunnel coupling, intra- and inter- dot Coulomb interactions. We find that the Coulomb blockade peaks exhibit a non-monotonous dependence on the Zeeman splitting of CQD, which can be understood in terms of the Andreev bound states. More importantly, the supercurrent in the Coulomb blockade valleys may provide the information of the spin states of CQD: for CQD with total electron number N=1,3 (odd), the supercurrent will reverse its sign if CQD becomes a magnetic molecule; for CQD with N=2 (even), the supercurrent will decrease sharply around the transition between the spin singlet and triplet ground states of CQD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call