Abstract

Probing ligand-target protein interactions provides essential information for deep understanding of biochemical machinery and design of drug screening assays. Native electrospray ionization-mass spectrometry (ESI-MS) is promising for direct analysis of ligand-protein complexes. However, it lacks the ability to distinguish between specific and non-specific ligand-protein interactions, and to further recognize the specifically bound proteins as drug target candidates, which remains as a major challenge in the field of drug developments by far. Herein we report a native-denatured exchange (NDX) mass spectrometry (MS) acquisition approach using a liquid sample-desorption electrospray ionization (LS-DESI) setup, and demonstrate its capability in enabling a change from native detection of noncovalent ligand-protein complexes to denatured analysis using three model ligand-protein complexes including myoglobin, CDP-ribonuclease and N,N′,N″-triacetylchitotriose (NAG3)-lysozyme. Notably, we found the NDX-MS approach can readily discriminate specific ligand-protein interactions from nonspecific ones, as revealed by their distinct dynamic profiles of Kd as a function of the DESI spraying flow rate. Consequently, this NDX-MS approach holds promise for future applications to discovering specific protein targets for ligands of interest, and to screening compounds with high specificity to drug targets and thus eliminates off-target effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call