Abstract

We report the catalytic activity of a single, isolated Pt deposit on Bi and Pb supports to probe the size and substrate effects on the electrochemical hydrogen evolution reaction (HER). Deposits were made electrolytically by an atom-by-atom method in a controlled plating; we prepared an individual Pt deposit on Bi and Pb ultramicroelectrodes (UMEs) such as a single isolated atom, clusters containing one to five Pt atoms, and nanoparticles to about 10 nm radius. A steady-state voltammogram on the single Pt deposits is observed by electrocatalytic amplification of the HER, with a negligible contribution by the HER at the substrate UME. A single Pt atom can act as an electrode for the HER, showing a diffusion-limiting current plateau in the voltammogram that can be used to estimate the radius of a single deposit. We simulated the voltammograms of the individual deposits, assuming the Volmer step of the HER is appropriate for a Pt cluster deposit, to obtain kinetic parameters for each deposit. The HER kinetics increases as the particle radius increases from ∼0.2 to ∼4 nm for Bi and Pb substrates and then reaches a limiting plateau. The limiting kinetics on the Bi substrate approaches that of bulk Pt while that on the Pb substrate is much smaller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call