Abstract
In large Solar Energetic Particle (SEP) events, ions can be accelerated at coronal mass ejection (CME)-driven shocks to very high energies. The spectra of heavy ions in many large SEP events show features such as roll-overs or spectral breaks. In some events when the spectra are plotted in terms of energy/nucleon, they can be shifted relative to each other to make the spectral breaks align. The amount of shift is charge to mass ratio (Q/A) dependent and varies from event to event. This can be understood if the spectra of heavy ions are organized by the diffusion coefficients (Cohen et al. 2005). In the work of Li et al. (2009), the Q/A dependence of the scaling is related to shock geometry when the CME-driven shock is close to the Sun. For events where multiple in-situ spacecraft observations exist, one may expect that different spacecraft are connected to different portions of the CME-driven shock that have different shock geometries, therefore yielding different Q/A dependence. In this work, we examine one SEP event which occurred on 2013 November 4. We study the Q/A dependence of the energy scaling for heavy ion spectra using helium, oxygen and iron ions. Observations from STEREO-A, STEREO-B and ACE are examined. We find that the scalings are different for different spacecraft. We suggest that this is because ACE, STEREO-A and STEREO-B are connected to different parts of the shock that have different shock geometries. Our analysis indicates that studying the Q/A scaling of in-situ particle spectra can serve as a powerful tool to remotely examine the shock geometry for large SEP events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.