Abstract

The role of RNA structure in virtually any biological process has become increasingly evident, especially in the past decade. However, classical approaches to solving RNA structure, such as RNA crystallography or cryo-EM, have failed to keep up with the rapidly evolving field and the need for high-throughput solutions. Mutational profiling with sequencing using dimethyl sulfate (DMS) MaPseq is a sequencing-based approach to infer the RNA structure from a base's reactivity with DMS. DMS methylates the N1 nitrogen in adenosines and the N3 in cytosines at their Watson-Crick face when the base is unpaired. Reverse-transcribing the modified RNA with the thermostable group II intron reverse transcriptase (TGIRT-III) leads to the methylated bases being incorporated as mutations into the cDNA. When sequencing the resulting cDNA and mapping it back to a reference transcript, the relative mutation rates for each base are indicative of the base's "status" as paired or unpaired. Even though DMS reactivities have a high signal-to-noise ratio both in vitro and in cells, this method is sensitive to bias in the handling procedures. To reduce this bias, this paper provides a protocol for RNA treatment with DMS in cells and with in vitro transcribed RNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.