Abstract

RNA structure underpins many essential functions in biology. New chemical reagents and techniques for probing RNA structure in living cells have emerged in recent years. High-throughput, genome-wide techniques such as Structure-seq2 and DMS-MaPseq exploit nucleobase modification by dimethylsulfate (DMS) to obtain complete structuromes, and are applicable to multiple domains of life and conditions. New reagents such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), glyoxal, and nicotinoyl azide (NAz) greatly expand the capabilities of nucleobase probing in cells. Additionally, ribose-targeting reagents in selective 2'-hydroxyl acylation and primer extension (SHAPE) detect RNA flexibility in vivo. These techniques, coupled with crosslinking nucleobases in psoralen analysis of RNA interactions and structures (PARIS), provide new and diverse ways to elucidate RNA secondary and tertiary structure in vivo and genome-wide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.