Abstract
Resonance plays critical roles in the formation of many physical phenomena, and many techniques have been developed for the exploration of resonance. In a recent letter [Phys. Rev. Lett. 117, 062502 (2016)], we proposed a new method for probing single-particle resonances by solving the Dirac equation in complex momentum representation for spherical nuclei. Here, we extend this method to deformed nuclei with theoretical formalism presented. We elaborate numerical details, and calculate the bound and resonant states in $^{37}$Mg. The results are compared with those from the coordinate representation calculations with a satisfactory agreement. In particular, the present method can expose clearly the resonant states in complex momentum plane and determine precisely the resonance parameters for not only narrow resonances but also broad resonances that were difficult to obtain before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.