Abstract

Intramolecular radical and proton migration in the gas phase are important processes driving the dissociation reactions underlying common tandem mass spectrometry processes, such as collision-induced and electron-induced dissociation reactions (CID and ExD). Mechanistic insights in these processes requires experiments that probe the molecular structures of ions along the reaction pathways, usually combined with quantum-chemical calculations. The combination of ion trap mass spectrometry with IR laser spectroscopy, pioneered among others by Dieter Gerlich, provides a particularly effective method to explore details of the ion structures. In this work, we employ infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations to probe the reactant and product ion structures of a homolytic bond cleavage reaction. First, we employ IRMPD spectroscopy to establish that protonation of the 4-bromoaniline precursor occurs on the amine moiety and then that C-Br homolytic cleavage produces the π-radical cation of aniline. Transition-state calculations are performed to compare the various pathways that connect reactant and product ions, including both proton and radical transfer mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call