Abstract

We investigate the reproducibility of repeated intercalation of hydrogen in graphene/Ge (110) and the formation of H2 nanobubbles after thermal treatments. By exploiting high-resolution electron energy loss, we obtain direct spectroscopic fingerprints of H2 trapped gas in the samples when nanobubbles are present and we are able to track the effectiveness of H intercalation via the Ge–H vibrational mode. We correlate the effectiveness of interface re-hydrogenation to the presence of structural defects in graphene as highlighted by Raman spectroscopy. The π-plasmon mode of graphene on Ge (110) is investigated as a function of the hydrogen presence at the interface, revealing that, independent of the hydrogen intercalation status, graphene is weakly interacting on Ge (110).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call