Abstract
The local density of optical states governs an emitters lifetime and quantum yield through the Purcell effect. It can be modified by a surface plasmon electromagnetic field, but such a field has a spatial extension limited to a few hundreds of nanometers, which complicates the use of optical methods to spatially probe the emitter-plasmon coupling. Here we show that a combination of electron-based imaging, spectroscopies and photon-based correlation spectroscopy enables measurement of the Purcell effect with nanometer and nanosecond spatio-temporal resolutions. Due to the large variability of radiative lifetimes of emitters embedded in nanoparticles with inhomogeneous sizes we relied on a statistical approach to unambiguously probe the coupling between nitrogen-vacancy centers (NV^0) in nanodiamonds and surface plasmons in silver nanocubes. We quantified the Purcell effect by measuring the NV^0 excited state lifetimes in a large number of either isolated nanodiamonds or nanodiamond-nanocube dimers and demonstrated a statistically significant lifetime reduction for dimers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.