Abstract

Summary Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region of a small maize GTPase (ROP7) and yellow fluorescent protein (YFP) was fused to the N-myristoylation motif of the calcium-dependent protein kinase 1 (LeCPK1) of tomato. Upon co-expressing in cowpea protoplasts a perfect co-localization at the plasma membrane of the constructs was observed. Acceptor-photobleaching FRET microscopy indicated a FRET efficiency of 58% in protoplasts co-expressing CFP-Zm7hvr and myrLeCPK1-YFP, whereas no FRET was apparent in protoplasts co-expressing CFP-Zm7hvr and YFP. Fluorescence spectral imaging microscopy (FSPIM) revealed, upon excitation at 435 nm, strong YFP emission in the fluorescence spectra of the protoplasts expressing CFP-Zm7hvr and myrLeCPK1-YFP. Also, fluorescence lifetime imaging microscopy (FLIM) analysis indicated FRET because the CFP fluorescence lifetime of CFP-Zm7hvr was reduced in the presence of myrLeCPK1-YFP. A FRET fluorescence recovery after photobleaching (FRAP) analysis on a partially acceptor-bleached protoplast co-expressing CFP-Zm7hvr and myrLeCPK1-YFP revealed slow requenching of the CFP fluorescence in the acceptor-bleached area upon diffusion of unbleached acceptors into this area. The slow exchange of myrLeCPK1-YFP in the complex with CFP-Zm7hvr reflects a relatively high stability of the complex. Together, the FRET data suggest the existence of plasma membrane lipid microdomains in cowpea protoplasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call