Abstract
Charge transport characteristics for metal-molecule-metal junctions containing two structurally related pi-conjugated systems were studied to probe pi-pi interactions in molecular junctions. The first molecule contains a typical pi-conjugated framework derived from phenylene vinylene units, whereas the second has the phenylene vinylene structure interrupted by a [2.2]paracyclophane (pCp) core. Electrochemical investigations were used to characterize the defects and packing density of self-assembled monolayers of the two molecules on gold surfaces and to enable quantitative comparison of their transport characteristics. Current-voltage measurements across molecular junctions containing the two species demonstrate that the pCp moiety yields a highly conductive break in through-bond pi-conjugation. The observed high conductivity is consistent with density functional theory calculations, which demonstrate strong through-space pi-pi coupling across the pCp moiety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the National Academy of Sciences of the United States of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.