Abstract

Cellular senescence is the irreversible cell cycle arrest in response to various types of stress. Although the plasma membrane and its composition are significantly affected by cellular senescence, detailed studies on the physical properties of the plasma membrane have shown inconclusive results. In this study, we utilized both ensemble and single-molecule fluorescence imaging to investigate how membrane properties, such as fluidity, hydrophobicity, and ganglioside GM1 level are affected by cellular senescence. The diffusion coefficient of lipid probes, as well as the type of diffusion determined by an exponent α, which is the slope of the log-log plot of mean squared displacement as a function of time lag, were analyzed. We found that the number of molecules with a lower diffusion coefficient increased as cells became senescent. The changes in the population with a lower diffusion coefficient, observed after methyl-β-cyclodextrin treatment, and the increase in ceramide levels, detected using a ceramide-specific antibody, suggest that ceramide-rich lipid rafts were enhanced in senescent cells. Our results emphasize the importance of membrane properties in cellular senescence and might serve as a base for in-depth studies to determine how such domains facilitate the signaling pathway specific to cellular senescence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.