Abstract

Stress-induced FCC-BCC phase transformation plays a crucial role in the mechanical behaviors of high-entropy alloys (HEAs). While there has been extensive research on this transformation during monotonic deformation, studies on fatigue behavior are extremely limited. Here, we use molecular dynamics simulations to investigate phase transformation and dislocation evolution in HEAs under strain-controlled symmetric tension–compression cycles. Our results show that cyclic deformation behavior is sensitive to strain amplitude, revealing three distinct cyclic responses. Notably, a progressive FCC-BCC phase transformation process occurs at a high strain amplitude of 4.8%. Grain boundaries and their triple junctions are identified as preferred sites for phase transformation under cyclic loading conditions. These findings provide valuable atomic-scale insights for understanding fatigue deformation in HEAs with transformation-induced plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.