Abstract
The protonation/deprotonation equilibrium of a fluorescent pH probe (carboxy-seminaphthorhodafluor-1, SNARF-1) within the nanoscale water layer confined in common black films (CBFs) has been studied. We find that SNARF-1 molecules feel a more acidic environment in CBFs than when they are in the bulk micellar solution, using the base/acid peak area ratio of the dye to indicate its microenvironment pH. Three surfactants are used to study the dependence of the pH drop versus charge: cationic (cetyltrimethylammonium bromide, CTAB), anionic (sodium dodecylsulphate, SDS) and nonionic (Triton X-100) species. The decrease of CBFs pH versus the pH of the micellar solution is the following: ΔpH ≈ 1.5 for CTAB (pH: 7.0–9.0), ΔpH ≈ 0.8 for SDS, and ΔpH ≈ 0.4 for Triton X-100. With the addition of electrolyte in CBFs, we observe large decrease the amplitude of the pH anomaly, thus suggesting an electrostatic origin of the pH change at nanoscale environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.