Abstract
Interfacial charge transfer between a semiconductor nanocrystal and a molecular relay is an important step in nanomaterial photocatalysis. The ferrocene redox couple (Fc+/Fc0, E0 = -4.9 eV vs vacuum) has now been used as a model redox relay system to investigate photocatalytic properties of CsPbBr3 perovskite nanocrystals. The photocatalytic reduction of ferrocenium (Fc+) to ferrocene (Fc0) with CsPbBr3 nanocrystals was dictated by the surface interactions. Whereas a rapid quenching and subsequent recovery of CsPbBr3 emission is seen at low Fc+ concentrations, the quenched emission was sustained at higher Fc+ concentrations. The photoinduced interfacial electron transfer between CsPbBr3 and ferrocenium (Fc+) studied using transient absorption spectroscopy occurred with a rate constant of 1.64 × 1010 s-1. Better understanding of interfacial processes using redox probes can lead to the improvement in photocatalytic performance of perovskite nanocrystals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.