Abstract

Electron transfer reduction of gas-phase ions generated from histidine-containing peptides forms stable cation-radicals that absorb light at 355 nm, as studied for AAHAR, AAHAK, DSHAK, FHEK, HHGYK, and HHSHR. Laser photodissociation of mass-selected cation-radicals chiefly resulted in loss of H atoms, contrasting dissociations induced by slow collisional heating. The 355 nm absorption was due to new chromophores created by electron transfer and radical rearrangements in the cation-radicals. The chromophores were identified by time-dependent density functional theory calculations as 2H,3H-imidazoline and 2H-dihydrophenol radicals, formed by hydrogen atom transfer to the histidine and tyrosine side chain groups, respectively. These radicals undergo facile C-H bond dissociations upon photon absorption. In contrast, dissociations of histidine peptide cation-radicals containing the 1H,3H-imidazoline ring prefer loss of 4-methylimidazole via a multistep reaction pathway. The isomeric cation-radicals can be distinguished by a combination of collision-induced dissociation and near-UV photodissociation. The TD-DFT excitation energies in model imidazoline radicals were benchmarked on EOM-CCSD energies, and a satisfactory agreement was found for the M06-2X and ωB97XD functionals. The combination of electron transfer, photodissociation, collisional activation, and theory is presented as a powerful tool for studying structures and electronic properties of peptide cation-radicals in the gas phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call