Abstract

Single-molecule atomic force microscopy and spectroscopy were applied to detect molecular interactions stabilizing the structure of halorhodopsin (HR), a light-driven chloride pump from Halobacterium salinarum. Because of the high structural and sequence similarities between HR and bacteriorhodopsin, we compared their unfolding pathways and polypeptide regions that established structurally stable segments against unfolding. Unfolding pathways and structural segments stabilizing the proteins both exhibited a remarkably high similarity. This suggests that different amino acid compositions can establish structurally indistinguishable energetic barriers. These stabilizing domains rather result from comprehensive interactions of all amino acids within a structural region than from specific interactions. However, one additional unfolding barrier located within a short segment of helix E was detected for HR. This barrier correlated with a Pi-bulk interaction, which locally disrupts helix E and divides a structural stabilizing segment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.