Abstract

The Oort Cloud remains one of the most poorly explored regions of the Solar System. We propose that its properties can be constrained by studying a population of dust grains produced in collisions of comets in the outer Solar System. We explore the dynamics of micron-size grains outside the heliosphere (beyond ~250 AU), which are affected predominantly by the magnetic field of the interstellar medium (ISM) flow past the Sun. We derive analytic models for the production and motion of small particles as a function of their birth location in the Cloud and calculate the particle flux and velocity distribution in the inner Solar System. These models are verified by direct numerical simulations. We show that grains originating in the Oort Cloud have a unique distribution of arrival directions, which should easily distinguish them from both interplanetary and interstellar dust populations. We also demonstrate that the distribution of particle arrival velocities is uniquely determined the mass distribution and dust production rate in the Cloud. Cometary collisions within the Cloud produce a flux of micron-size grains in the inner Solar System of up to several per square meter per year. The next-generation dust detectors may be sensitive enough to detect and constrain this dust population, which will illuminate us about the Oort Cloud's properties. We also show that the recently-detected mysterious population of large (micron-size) unbound particles, which seems to arrive with the ISM flow is unlikely to be generated by collisions of comets in the Oort Cloud.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.