Abstract

The progress of the interfacial reaction of polystyrene chains end-capped by a primary amine (PS-NH2) and PMMA chains end-capped by an anhydride (PMMA-anh) has been monitored by SEC-UV, by using anthracene-labeled polystyrene chains (anth-PS-NH2) as a probe. Assemblies of an anth-PS-NH2 layer and a PMMA-anh layer were annealed at 200 °C for various periods of time. The interfacial reaction rate depends on the molecular weight (MW) of the reactive precursors in relation to the χN value of the chains. For chains of low χN (χN = 6), the reaction is faster because the interface becomes more diffuse with time, as observed by TEM and AFM, consistent with compatibilization of the weakly immiscible polymers by the copolymer formed in-situ. For chains of higher molecular weight and χN (10, instead of 6), the interface is much sharper and the residence time at the interface of the symmetric diblock copolymer of higher molecular weight is also increased, which dramatically restricts the progress of the interfacial reaction under the annealing conditions used in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.