Abstract

C-terminal lysine (C-K) variants are commonly observed in therapeutic monoclonal antibodies and recombinant proteins. Heterogeneity of C-K residues is believed to result from varying degree of proteolysis by endogenous carboxypeptidase(s) during cell culture production. The achievement of batch-to-batch culture performance and product quality reproducibility is a key cell culture development criterion. Understanding the operational parameters affecting C-K levels provides valuable insight into the cell culture process. A CHO cell line X expressing a recombinant antibody was selected as the model cell line due to the exhibited sensitivity of its C-K level to the process conditions. A weak cation exchange chromatography (WCX) method with or without carboxypeptidase B (CpB) treatment was developed to monitor the C-K level for in-process samples. The effects of operating conditions (i.e., temperature and culture duration) and media trace elements (copper and zinc) on C-K variants were studied. The dominant effect on C-K level was identified as the trace elements concentration. Specifically, increased C-K levels were observed with increase of copper concentration and decrease of zinc concentration in chemically defined medium. Further, a hypothesis for C-K processing with intracellular and extracellular carboxypeptidase activity was proposed, based on preliminary intracellular carboxypeptidase Western blot results and the extracellular HCCF holding study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.