Abstract
Mammalian nuclei are complex organelles containing many functionally distinct nucleoprotein and protein particles in the size range 20-30 nm. This complexity hinders the study of structure-function relationships within the mammalian nucleus. Element-specific mapping using the energy-filtered transmission electron microscope can provide novel information on protein and nucleic acid density within structures, facilitating the identification of biochemical heterogeneity within morphologically similar structures. We demonstrate that imaging phosphorus, nitrogen and carbon can be useful in the characterization of protein and nucleoprotein structures within the nucleus. Additionally, electron spectroscopic imaging (ESI) may be used to map the distribution of strains relative to unstained material when biochemical-specific staining protocols, such as EDTA-regressive staining of RNA with uranyl acetate, are used. Relative mass may also be determined from ESI images and can be combined with elemental information further to distinguish biological constituents. Using this approach, heterochromatin was found to be variable in nucleic acid content although the morphology appeared relatively homogenous. ESI shows substantial promise for the investigation of structure-function relationships in biological specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.