Abstract

We analyze the possibility of probing nonstandard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN). We consider the effect of NSI on the neutrino propagation through the SN envelope within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant conversions, which may take place in the most deleptonized inner layers. We study the possibility of detecting NSI effects in a Megaton water Cherenkov detector, either through modulation effects in the ${\overline{\ensuremath{\nu}}}_{e}$ spectrum due to (i) the passage of shock waves through the SN envelope, (ii) the time dependence of the electron fraction, and (iii) the Earth matter effects; or, finally, through the possible detectability of the neutronization ${\ensuremath{\nu}}_{e}$ burst. We find that the ${\overline{\ensuremath{\nu}}}_{e}$ spectrum can exhibit dramatic features due to the internal NSI-induced resonant conversion. This occurs for nonuniversal NSI strengths of a few %, and for very small flavor-changing NSI above a $\mathrm{\text{few}}\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.