Abstract

Non-standard neutrino self interactions (NSSI) could be stronger than Fermi interactions. We investigate the ability to constrain these four-neutrino interactions by their effect on the flux of neutrinos originating from a galactic supernova. In the dense medium of a core collapse supernova, these new self interactions can have a significant impact on neutrino oscillations, leading to changes at the flavor evolution and spectra level. We use simulations of the neutrino flux from a 13 solar mass, core collapse supernova at 10 kpc away, and numerically propagate these neutrinos through the stellar medium taking into account vacuum/MSW oscillations, SM ν − ν scattering as well as ν − ν interactions that arise from NSSI. We pass the resulting neutrino flux to a simulation of the future Hyper-Kamiokande detector to see what constraints on NSSI parameters are possible when the next galactic supernova becomes visible. We find that these constraints depend strongly on the neutrino mass hierarchy and if the NSSI is flavor-violating or preserving. Sensitivity to NSSI in the normal hierarchy (NH) at Hyper-K is limited by the experiment’s ability to efficiently detect νe, but deviations from no NSSI could be seen if the NSSI is particularly strong. In the inverted hierarchy (IH) scenario, Hyper-K can significantly improve constraints on flavor-violating NSSI down to mathcal{O} (10−1)GF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.