Abstract

We study probes of neutral triple gauge couplings (nTGCs) at the LHC and the proposed 100TeV $pp$ colliders, and compare their sensitivity reaches with those of the proposed $e^+ e^-$ colliders. The nTGCs provide a unique window to the new physics beyond the Standard Model (SM) because they can arise from SM effective field theory (SMEFT) operators that respect the full electroweak gauge group $SU(2)_L\otimes U(1)_Y$ of the SM only at the level of dimension-8 or higher. We derive the neutral triple gauge vertices (nTGVs) generated by these dimension-8 operators in the broken phase and map them onto a newly generalized form factor formulation, which takes into account only the residual U(1)$_{\rm{em}}$ gauge symmetry. Using this mapping, we derive new relations between the form factors that guarantee a truly consistent form factor formulation of the nTGVs and remove large unphysical energy-dependent terms. We then analyze the sensitivity reaches of the LHC and future 100TeV hadron colliders for probing the nTGCs via both the dimension-8 nTGC operators and the corresponding nTGC form factors in the reactions $ pp(q\bar{q})\to Z\gamma$ with $Z\to\ell^+\ell^-,\nu\bar{\nu}$. We compare their sensitivities with the existing LHC measurements of nTGCs and with those of the high-energy $e^+e^-$ colliders. In general, we find that the prospective LHC sensitivities are comparable to those of an $e^+ e^-$ collider with center-of-mass energy $\leq 1$TeV, whereas an $e^+ e^-$ collider with center-of-mass energy $(3 - 5)$TeV would have greater sensitivities, and a 100TeV $pp$ collider could provide the most sensitive probes of the nTGCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.